
Memetic Algorithms for Multi-objective Routing and
Scheduling of Airport Ground Movement

Journal: Transactions on Evolutionary Computation

Manuscript ID TEVC-00048-2022

Manuscript Type: Regular Papers

Date Submitted by the
Author: 27-Jan-2022

Complete List of Authors: Beke, Lilla; Queen Mary University of London, School of Engineering and
Materials Science
Uribe, Lourdes; IPN ESFM, Mathematics Department
Lara, Adriana; IPN ESFM, Mathematics Department
Coello Coello, Carlos; CINVESTAV IPN, Department of Computer Science;
Basque Center for Applied Mathematics, Heuristic Optimization
Weiszer, Michal; Queen Mary University of London, School of Engineering
and Materials science
Burke, Edmund; University of Leicester, University Road
Chen, Jun; Queen Mary University of London, School of Engineering and
Materials Science

Keywords: Multigraph, Multi-objective routing and scheduling, Airport ground
movement, Memetic algorithm, Time windows

IEEE Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Memetic Algorithms for Multi-objective Routing
and Scheduling of Airport Ground Movement

Lilla Beke, Lourdes Uribe, Adriana Lara, Member, IEEE, C.A. Coello Coello, Fellow, IEEE, Michal Weiszer,
Edmund K. Burke, Jun Chen

Abstract—Routing and scheduling problems with increasingly
realistic modelling approaches often entail the consideration of
multiple objectives, time constraints, and modelling the system
as a multigraph. The latter is required in multiple applications to
represent alternative routes with different costs linking the same
nodes. The detailed modelling approach increases computational
complexity and may also lead to violation of the additivity prop-
erty of costs. Therefore approximate solution methods become
more suitable. This paper focuses on one particular real-world
application, the Airport Ground Movement Problem, where both
time constraints and parallel arcs are involved. We introduce a
novel Memetic Algorithm for Routing in Multigraphs with Time
constraints (MARMT) and present a comprehensive study on its
different variants; these variants are based on diverse genetic
representation methods. We propose a local search operator that
provides significant improvements. Our results also show that the
best variant of MARMT is consistently producing high quality
results in shorter times compared to a state of the art enumerative
algorithm. The algorithms are tested on real data. MARMT can
be adapted for other applications with minor modifications, such
as train operations or electric vehicle routing.

Index Terms—Multiobjective routing and scheduling, Multi-
graphs, Airport ground movement, Memetic algorithm, Time
windows.

I. INTRODUCTION

EFFICIENCY of transportation systems is key to satisfy-
ing the increasingly high levels of industrial and com-

mercial demands of today, while balancing the economic cost
and environmental impact. Transportation related problems are
often formulated as variations of the Shortest Path Problem [1].
Generally, there are conflicting objectives to be considered
in such problems, often including travel time and energy
consumption (including fossil and sustainable energy). The
presence of multiple objectives implies that generally there
is not a single solution optimising all objectives. Therefore,
the goal is to find a set of solution paths with non-dominated
costs in compliance with certain time constraints.

Often, the infrastructure in a transportation system is de-
scribed through a graph for the purposes of the routing

L. Beke, J. Chen and M. Weiszer are with Queen Mary University
of London, London, UK. e-mail: l.beke@qmul.ac.uk, jun.chen@qmul.ac.uk,
m.weiszer@qmul.ac.uk

L. Uribe and A. Lara are with ESFM, Instituto Politécnico Nacional,
Mexico City, Mexico. e-mail: luriber@ipn.mx, alaral@ipn.mx

C.A. Coello Coello is with the Department of Computer Science,
CINVESTAV-IPN (Evolutionary Computation Group), México, D.F. 07300,
México. He is also with the Basque Center for Applied Mathematics (BCAM)
& Ikerbasque, Spain.

E. K. Burke is with University of Leicester, UK. e-mail: ed-
mund.burke@leicester.ac.uk

Manuscript received ..., ...; revised August ..., XXXX.

problem [2]. Nodes correspond to important places in the
system, such as junctions, stations, and starting and destination
points. In a simple graph model, a directed arc between two
nodes implies a direct link between the corresponding places
in the system in the marked direction. A series of connected
arcs (a path) in the graph corresponds to a route.

Optimising airport ground operations exemplifies the multi-
objective routing and scheduling problems with time con-
straints, and can be viewed as a special case of the energy-
efficient driving problem. A taxiing aircraft is most fuel
efficient at certain speeds and on routes with fewer turns.
For this reason, there is a trade-off between taxi time and
fuel consumption [3]. The multigraph modelling approach
was shown to provide better solutions than the simple graph
approach in [4]. A similar trade-off is often present when
routing different vehicles [5], suggesting a wider applicability
for algorithms devised for airport ground movement.

Vehicle speed is a decision variable in many real-world
applications. In the presence of time constraints, the choice
of speed can affect feasibility of the solution, therefore it is
important to manage routing and scheduling in an integrated
way. The multigraph representation makes this possible by
including the choice of speed profiles as discrete decision
variables. A series of connected arcs in a multigraph can
represent a trajectory, describing the movement of the vehicle
in terms of time (hence scheduling) and space (hence routing),
whereas a route only describes the movement in space. The
need for an integrated routing and scheduling approach applies
to the airport ground movement problem [6], routing in
maritime transportation [7], train operations [8] and transport
of hazardous materials [9]. In other contexts the multigraph
modelling approach has also been employed for the vehicle
routing problem [10] and multi-modal transportation [11].

The Multiobjective Shortest Path Problem (MSPP) is NP-
hard even on simple graphs without time constraints [12] and
it is NP-complete when time constraints are also considered
[13]. The multigraph approach further increases search space
and computational complexity. In practical settings, finding
a good representation of the Pareto front in a given time
budget is often important. Metaheuristics are popular for this
reason compared to exact approaches. In addition, unlike most
exact approaches, they can handle costs that do not satisfy the
additivity property (detailed in Section III-D).

Genetic algorithms (GA) are metaheuristics that are widely
applied to the MSPP [14], [15], [16], [17], and to multimodal
transport problems [18], [11]. Our previous work explored the
choice of representation schemes for the multigraph MSPP

Page 1 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

in artificial problem instances without time constraints [19].
The presence of time constraints calls for incorporation of
additional constraint management techniques. When using
constraints, it is widely accepted that GAs require a consider-
able amount of resources to calculate a suitable approximation
of the solution. A natural way to improve the convergence
properties of GAs is to include a local search procedure [20],
[21], [22]. The local search procedure explores the search
space around a specific candidate solution. This way the local
information of the selected solution is exploited, giving a new,
improved solution; then, this improved solution is incorporated
into the population.

In light of above, we introduce the Memetic Algorithm
for Routing in Multigraphs with Time constraints (MARMT)
for the Airport Ground Movement problem, and the family
of problems it represents, with variants based on different
solution encoding schemes. All variants of MARMT are based
on non-dominated sorting [23]. Our focus is on the design
of local search operator and constraint handling scheme,
and the comparison of the different encoding schemes used
for MSPPs. Our results are also compared to a state-of-art
enumerative solution approach [4].

The main contributions include: (i) MARMT is developed
for the multigraph MSPP with time windows. Three different
genetic representation methods are adapted to the problem and
compared. MARMT is shown to handle the higher number
of parallel arcs and non-additivity of costs better compared
to the enumerative approach. (ii) A local search operator
is proposed based on single objective search. Integrating
the local search operator to the metaheuristic significantly
improves solution quality as measured by multiple quality
indicators. (iii) MARMT is tailored to a representative real
world application, the airport ground movement problem, and
are tested on real world data. (iv) Constraints related to
aircraft movements and time windows are incorporated into
the algorithm. A mixed approach is proposed for constraint
handling based on fitness penalties and preserving feasibility.
The remainder of this paper is structured as follows. The
background is presented in Section II. The airport ground
movement problem is described in Section III. The proposed
representations, operators and constraint handling schemes are
described in Section IV. Implementation details are given in
Section V and results are discussed in Section VI. Finally,
conclusion is drawn in Section VII.

II. BACKGROUND

A. Solution approaches for MSPP

1) Enumerative algorithms: The three main categories of
MSPP algorithms are: ranking methods, two-phase methods
and labelling methods. Ranking methods [24] for the bi-
objective case generate a specified number of shortest paths
in non-decreasing order regarding one of the objectives, and
eliminate dominated solutions. Two-phase methods [25], [26]
first list solutions that can be found by aggregating objectives,
and then explore a restricted search space in the second
phase to find the remaining Pareto optimal solutions. Labeling
methods, including label setting [27] and label correcting [28]

methods generalise the labeling solution techniques used for
the single-objective shortest path problem, such as Dijkstra’s
algorithm [29] for more objectives. The efficiency of the above
approaches have been compared empirically in [26], where
labelling methods and two phase methods were found to be
the best in most cases.

Extensions of labeling algorithms based on the A* algo-
rithm [30] such as The New Approach to Multiobjective A*
(NAMOA*) are able to make use of heuristic information and
accelerate the optimisation process for the MSPP, while still
finding the whole Pareto front, assuming additive costs.

The above approaches are not guaranteed to find all possible
solutions if the costs are non-additive, or if time constraints
are present. In both of these cases a partial solution that is
dominated by some other partial solutions is discarded, even
though it might have turned out to be part of a Pareto optimal
solution globally. In the case of time constraints it might be
impossible to complete the dominating partial path without
violating time constraints, or satisfying the time constraints
might entail additional costs. The case of non-additivity is
explained in Section III-D.

There are few studies of MSPP with time constraints. Most
studies on constrained shortest path problems are considering
resource constraints, and they are overwhelmingly about single
objective problems [31]. Time constraints pose a unique chal-
lenge. Examples of ranking and labeling methods proposed
for the MSPP with time constraints are reviewed in II-B.

2) Metaheuristic algorithms: Several studies applied GAs
to shortest path problems with various representation methods,
including direct variable length [32], direct fixed length [33],
random keys [34] and integer-valued priority [35] representa-
tions. The representation scheme determines the search space
to be explored and the available evolutionary operators for
exploration. Therefore the choice of the representation method
can influence the effectiveness of the search [36].

The direct variable length representation [32] has been
employed for the MSPP by multiple authors [15], [37], [16].
A chromosome based on this representation lists nodes of
a solution path directly. Its greatest advantage is the one-
to-one mapping from solution paths to chromosomes, which
avoids creating unnecessary plateaus in the search space. Its
disadvantage is the possibility of loop formation in crossover
and that for some pairs of parents crossover might not be able
to produce any novel candidates.

The two priority based representations are the integer-valued
priority representation [38], [35] and random keys [39]. The
random keys representation employs floating-point numbers as
priorities. In both representations a path is encoded through
assigning a priority value for each of the nodes in the graph.
The path can be decoded from the priority values by starting
at the origin node and each time moving to the neighbouring
node with the highest priority that has not yet been visited.
The main advantage of priority based representations is that
any priority values can be decoded to a path, and that crossover
can be applied to any pair of parents. A disadvantage is that
these representations offer one-to-n mapping, thereby forming
plateaus in the search space. The random key representation

Page 2 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

has higher ambiguity than the Integer valued priority repre-
sentation, suggesting larger plateaus.

The direct fixed length representation specifies the next node
to visit at every node. The path is decoded by following the
pointers to neighbouring nodes from the origin node. The
length of the chromosomes equal the number of nodes in the
graph. Consequently, this is also a one-to-n mapping, with gen-
erally less ambiguity than the priority based representations.

The above representations have been adapted for the multi-
graph MSPP in our previous work [19], with further adaptation
required for the airport ground movement problem. Without
time constraints, we found that different representations are
best for different artificial problem instances, depending on the
network type. Therefore, it is worthwhile to further investigate
multiple representations for constrained problems.

Constraint handling for multiobjective evolutionary algo-
rithms is an active area of research, with most studies focused
on balancing the search between the feasible and infeasible re-
gions, and complications due to high numbers of objectives or
constraints [40]. Penalty functions are the simplest and perhaps
the most widely applied methods. They can be sufficient for
multiobjective problems with fewer constraints [41]. However,
they are thought to be less suited for handling a larger number
of constraints, because tuning the penalty function is difficult.
For combinatorial problems, preserving feasibility and repair
mechanisms are also popular choices to limit the search space.
Therefore, a mixed approach is proposed in this paper.

Memetic algorithms (MA) supplement the evolutionary pro-
cess with a local search process [20], [21]. This is a popular
extension of GAs, in order to avoid premature convergence and
guide the population towards promising areas of the search
space. MA approach has been proposed for the dynamic
shortest path problem in simple graphs in [18]. In local
search, all possible alternative partial routes were enumerated
that might replace a single arc in a route, and the one that
dominated the highest number of other alternative routes was
chosen. The disadvantage of this approach is that it only
replaces a single arc, and the number of alternative routes
might be a very high, especially in a multigraph.

B. Airport ground movement problem

The airport ground movement problem is concerned with
routing and scheduling of aircraft between gates and runways
in an efficient and safe way. Airports are often overloaded,
multiple departing and arriving aircraft are on the taxiways
at the same time, resulting in a complex and interconnected
transportation system. Efficiency of airport ground movement
can be evaluated according to multiple objectives. The two
most important are taxi time and fuel consumption, although
other objectives such as emissions can also be considered [6].

Studies concerning the ground movement problem can be
separated into two main categories, the sequential approach
and the global approach. In the sequential approach, aircraft
are routed in the order of their starting times, where the tra-
jectory of the already routed aircraft needs to be respected by
later aircraft. The global approach on the other hand considers
the order of the aircraft as a decision variable, and usually

assigns routes to aircraft from a predetermined set of routes
in order to keep the complexity of the problem manageable.
In this paper the sequential approach is considered.

Earlier studies [42], [43] suffered from multiple limitations,
such as considering only a single objective and assumption of a
constant speed for calculating traversal times. Single objective
approaches can not provide the available trade-offs in a single
run. Realism of calculating traversal times is of key importance
to provide the decision maker with accurate information and
to allow good conformance during the execution stage.

A multiobjective approach, k-QPPTW was studied in [3].
However, a decomposition method was applied to separate the
routing and scheduling aspects of the problem. Realistic speed
profiles are only considered for the scheduling component,
while constant speeds are assumed for the routing component.
Thus only a limited number of routes are being explored for
the scheduling component, which compromises solution qual-
ity compared to an integrated approach. Great improvements
were achieved regarding both taxi time and fuel consumption
by Chen et. al. with the trajectory-based ground movement
operations framework [44], [6], by managing routing and
scheduling in an integrated way, with realistic speed profiles.

Weiszer et. al. adapted the NAMOA* algorithm [45] for
solving the ground movement problem. The introduced al-
gorithm, AMOA* provided 5-16% improvements for the ob-
jective values on the considered test data compared to other
baseline algorithms. This improvement can be attributed to the
integrated routing and scheduling and using AMOA* instead
of the k-shortest path algorithm. However, in some cases,
especially for larger airports and for a higher number of
parallel arcs, the running times of AMOA* can be unaccept-
able. Multigraph reduction was hence proposed [4] to decrease
the search-space, with some compromise on solution quality.
AMOA* also suffers from the problem of non-additivity.

As pointed out in [4], a metaheuristic solution approach
can scale better to a higher number of parallel arcs. Fur-
thermore, there is no requirement for the costs to satisfy
the non-additivity property [46] (see Section III-D) for the
metaheuristic approach.

C. Other real-world applications
The multigraph MSPP is a relevant problem facing many

other real-world transportation systems. Some of these have
a heavier routing others a heavier scheduling component.
The common features are the presence of multiple objectives,
the availability of alternative trajectories between the same
two points and interactions of different vehicles in the same
system, such that the optimal solutions for individual vehicles
do not result in system level optimality. The interactions can
be modelled through time constraints.

One of the problems where the multigraph model was shown
to be valuable is time-constrained vehicle routing problems.
Using a multigraph model for an on demand transportation
problem reduced associated costs compared to a simple graph
model [10]. A similar approach was followed by multiple
authors in vehicle routing problems [47], [48].

Optimising energy efficiency of urban rail transit can also be
conceptualised through a multigraph, where optimising speed

Page 3 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

profiles and time tables in an integrated way provides signifi-
cant energy savings [8]. In urban rail transit, vehicles interact
not only through inflicting time constraints on each other, but
through regenerative breaking, which entails synchronization
of the accelerating/braking actions.

Optimal speed control of individual electric vehicles taking
into account queues at intersections is studied in [49]. It
is pointed out that optimising for individual vehicles might
compromise system level efficiency, however, this is not in-
vestigated. For the system level study, a multigraph approach
can be used, where alternative speed profiles are included for
each vehicle for each leg of its route.

In marine transportation the speed of a ship is optimised
with respect to fuel price and travel time [50]. It has also
been shown that the optimal route depends on the optimised
objective [51], suggesting that maritime transportation prob-
lems can also be modelled through a multigraph. Routing
and speed decision problems for fleets of ships are a recent
area of research [7], where a similar routing and scheduling
framework as proposed in this paper might be of great use.

Multimodal transportation problems [11], [52] and ride-
sharing problems [53], [54] concern routing passengers or
goods in a network where multiple modes of transport are
available for the same leg of a route. The multigraph represen-
tation is natural to such problems. Travel time and economic
cost are usually relevant objectives. Time constraints stem
from timetables, which can be adjusted to target system level
optimality (e.g. balancing congestion and customer demands).

III. AIRPORT GROUND MOVEMENT AS A COMBINATORIAL
OPTIMISATION PROBLEM

The ground movement problem is decomposed into a series
of MSPPs on multigraphs by the framework introduced in [6].
Realistic speed profiles are precomputed for certain sections
of taxiways based on their geometry, called segments (defined
in Section III-C). The speed profiles and the corresponding
costs are stored in a database, saving computation time [55].
Trajectories for each aircraft can then be defined by consecu-
tive segments with a specified speed profile between the origin
(vO) and destination (vD) nodes, or equivalently, by specifying
a path in the multigraph. The physical constraints of aircraft
manoeuvring such as the maximum speed and acceleration rate
are handled by the speed profile generation algorithm [55].

A. Sequential routing of aircraft

Aircraft are routed on a first come first serve basis sequen-
tially, as described in Algorithm 1 [4]. The corresponding
notations are explained in Table I. In line 3, a set of non-
dominated solutions Θi is found by procedure Route. Route
can be based on any MSPP solver algorithm. Here, we
consider AMOA* and MARMT (see Section IV). In line
5, Aircraft are held at the gate for 1 min before Route is
reattempted if there aren’t any solutions found. We do not
consider holding during taxiing.

Even though only a single trajectory is realised by the
current aircraft, it is important to find the whole Pareto front or
a good approximation. This ensures that the Decision Maker

Algorithm 1 Sequential routing of aircraft
1: Sort AircraftSequence according to ti
2: for all aircrafti ∈ AircraftSequence do
3: Θi ← Route(aircrafti)
4: if Θi is empty then
5: ti ← ti + 60s {1 min postponement}
6: Go to line 3
7: end if
8: θ ← Preferred solution from Θi

9: Reserve route θ and adjust corresponding time con-
straints

10: end for

(DM) gets accurate information about the available trade-offs.
Our primary interest is to solve the routing problem for each
aircraft efficiently. For this reason, we use a simple strategy
to simulate the role of a DM. Out of Θi, the one realised
trajectory is chosen according to a weighted sum of the costs.
The weights of the objectives are set such that w2 = 1− w1.

The airport ground movement problem for a given aircraft
can be described by two graphs, one depicting the layout of the
airport and the other one depicting all possible speed profiles
for a given aircraft. These two graphs are described below.

B. The layout graph

The layout graph contains the geographical information
about all available taxiways in the airport. The layout graph
is a directed graph G0 = (V0, E), where the set of nodes
V0 represent gates, stands, runway exits, taxiway intersections
and intermediate points. Intermediate points are distributed in
such a way that taxiways between two nodes in the layout
graph are at most as long as the minimum safe separation of
aircraft. This minimum safe separation is set to 60m [4].

In line with the established terminology for ground move-
ment operations, the sections of taxiways between two nodes
in G0 are called edges E = {e1, e2, ..., e|E|}. To avoid
confusion, in this paper we refer to arcs of graphs when we
use the term in general and reserve the term “edge” only for
the airport layout graph.

Edges are used to govern the scheduling component of the
problem as multiple aircraft moving on the airport ground at
the same time. Avoiding conflict between aircraft is ensured
by (1) allowing at most one aircraft at a time on each edge
and (2) allowing no aircraft on edges that are conflicting with
an occupied edge at any time. The set of conflicting edges
with edge e consists of e′, such that the distance of e and
e′ is smaller than the minimum safe separation (as measured
along taxiways). To keep track of occupation of the edges, a
set of time windows (Fe) are assigned to each edge. Time
windows are corresponding to time intervals when the edge is
not occupied and not conflicting with occupied edges.

C. The speed profile graph

Before turning, aircraft generally slow down, and after
turning accelerate. Thus, it makes sense to group together
sequences of edges depending on their geometry. For this

Page 4 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

TABLE I
NOTATIONS.

Notation Description Notation Description
aircrafti The ith aircraft G = (V,A) Speed profile graph (multigraph), V ⊂ V0

ti Start time of aircrafti vO Origin node
θ A trajectory vD Destination node
Θi Set of feasible trajectories with non-dominated

cost vectors found for aircrafti
u Number of considered speed profiles in multigraph

reduction
θ(nodes, indices) The trajectory defined by nodes and indices (v, w)k ∈ A The kth arc between nodes v and w in G
w1, w2 Weights of the first and second objective when

choosing a trajectory for aircrafti from Θi

I(e, (v, w)) The set of indices k, such that speed profile (v, w)k is
a valid continuation of the route r with last edge e

pred((v, vi+1), θ) Predecessor edge of segment (v, vi+1) in θ c(v,w)k=(c1, c2) Cost vector associated with speed profile (v, w)k

Route The routing procedure that finds trajectories c1 Cost component associated with taxi time
G0 = (V0, E) Layout graph (simple graph) c2 Cost component associated with fuel consumption
ei ∈ E An edge in the layout graph C(θ) Sum of cost vectors associated with trajectory θ
Fe =
{(te,i,start, te,i,end) |
0 < i <| Fe |}

Set of time windows assigned to edge e M Priority based chromosome. For node v, M1,v encodes
the priority value and M2,v encodes parallel arc index

reason, speed profiles are modelled as straight and turning
segments as defined in [56], [3]. An edge belongs to a turning
segment if its angle with the previous edge in the trajectory
(predecessor edge) is above 30 degrees. Otherwise it belongs
to a straight segment. Sequential edges of the same type are
grouped together. The segments are generated in a way to
cover all possible edge-sequences in the layout graph [55].

The speed profile graph G = (V,A) stores information
about the pre-computed efficient speed profiles for all seg-
ments. For the same segment multiple alternative speed pro-
files are possible. Therefore, G is a multigraph . The nodes of
G are the endpoints of segments, V ⊂ V0, V = {1, 2, ...|V |}.
Arcs in G are associated with a sequence of edges in G0. The
arcs (v, w)k ∈ A are defined by their endpoints v, w ∈ V
and a parallel arc index 1 ≤ k ≤ |A(v,w)|. Arcs imply speed
profiles, and thus the predecessor edge to the segment (v, w)
in a given trajectory θ affects which speed profiles out of
{(v, w)1, ...(v, w)|A(v,w)|} are available in θ. The set of indices
of speed profiles between nodes v and w that can follow a
given predecessor edge, e, are denoted I(e, (v, w)).

There is a cost-vector associated with each speed profile
c(v,w)k = (c1, c2), which describes the taxi time (c1) and fuel
consumption (c2). Speed profiles of the same type (straight
or turning) for the same segment can be thought of as a cost
matrix, which includes non-dominated cost-vectors as its rows.

The number of alternative speed profiles considered for each
segment greatly influences the size of the search space. For
this reason, multigraph reduction techniques are introduced in
[4] to reduce the number of speed profiles from the database.
In this paper, we employ including the first u speed profiles.

It is important to note that the number of parallel arcs in
G sometimes can be different than u for some pairs of nodes.
This is because in rare cases two segments might connect the
same two nodes, but use different edges. An example of this is
shown on Figure 1. In this case, there will be u speed profiles
for each straight (angles below 30 degrees) segment between
the same nodes. All of those speed profiles show up in G,
which leads to 2u parallel arcs between some pairs of nodes.

The speed profiles and costs also depend on the weight
category of aircraft. If a segment is the first or last one in a
trajectory, it implies greater acceleration or deceleration than

Fig. 1. Source of inhomogeneous numbers of parallel arcs in G.

Fig. 2. Illustration of non-additivity property. The segment 4-5 is a turning
segment, when approached via segment 3-4, and is a straight segment when
approached via segment 2-4. Depending on the direction, the cost-vector of
segment 4-5 is different, a turning segment is more costly. It is possible that
up to node 4 the trajectory via node 3 dominates the trajectory via node 2,
while up to node 5 the trajectory via node 2 dominates.

if it is in the middle. Therefore, speed profile graphs differ for
aircraft in different weight category. However, within the same
weight category, the difference is small, and can be quickly
modified before routing each aircraft.

D. Non-additivity of costs
Straight or turning speed profiles can be associated with

the same segment. Which speed profiles are appropriate is
governed through the predecessor edges of partial trajectories.
This leads to costs being non-additive. Labelling approaches
for the MSPP only find all possible solutions when the costs
satisfy the additivity property, because they eliminate dom-
inated partial solutions. Metaheuristic approaches can easily
overcome this challenge. Figure 2 shows a detailed example.

E. Routing problem considering a single aircraft
A trajectory θ ∈ Θi for aircrafti can be specified as a

path in G (multigraph). Such θ in general has the form:

(v1, v2)
k1 , (v2, v3)

k2 , . . . , (v|θ|−1, v|θ|)
k|θ|−1 , (1)

s.t. (vj , vj+1)
kj ∈ A, ∀j ∈ (1, 2, . . . , |θ| − 1) (2)

Page 5 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

However, not all paths in the multigraph correspond to a fea-
sible trajectory. The following constraints need to be satisfied:

1) Satisfy predecessor edges. kj ∈ I(e, (vj , vj+1)), ∀j ∈
(1, 2, . . . , |θ| − 1), where e = pred((vj , vj+1), θ)

2) Satisfy time windows. For each edge e in trajectory θ,
exists a time window tw ∈ Fe, such that the traversal
period of edge e according to θ falls into tw.

3) Not containing any loops in the layout graph. Listing the
end nodes of all edges in θ should not contain duplicates.

4) The trajectory should start with the origin node and end
with the destination node. vO = v1 and vD = v|θ| .

Constraint 1 ensures that the trajectory describes a realistic
speed profile in terms of acceleration and deceleration. Con-
straint 2 ensures the trajectory complies with the time windows
of each edge. Constraint 3 prohibits routes with loops in G0,
as a practical consideration. Although loops could be a way
of achieving compliance with time windows, holding before
taxiing or during taxiing is generally a better choice. Note,
that this is a stronger statement than v1, v2, v3 . . . , v|θ|−1, v|θ|
being all distinct, which only concerns end nodes of segments.
Constraint 4 ensures that the end points of the trajectory are as
required. Constraint 1 and 2 are highly specific to the ground
movement problem. In other applications, time constraints
might be defined for nodes or for arcs of the multigraph.

We are looking for the set of feasible trajectories Θi with
Pareto optimal costs. The cost-vector of a feasible trajectory
θ can be calculated according to Equation (3).

C(θ) =
∑

(vj ,vj+1)k∈θ

c(vj ,vj+1)
kj . (3)

A solution θ1 is said to be Pareto-optimal if another solution θ2
does not exist, such that θ2 is at least as good as θ1 according
to both objectives and better according to at least one objective.

IV. THE MEMETIC ALGORITHM: MARMT

MARMT is presented in this section with three variants
based on one direct and two indirect representation meth-
ods. MARMT is based on non-dominated sorting and binary
tournament selection with crowded-comparison [23]. However,
it can be easily modified to use other multi-objective evo-
lutionary strategies [57], [58]. The operators are performed
in the following order: mutation, crossover and local search.
This way the diversity of the population is increased before
crossover and the results of local search always reach evalu-
ation without further modification. We do not investigate the
direct fixed length representation. The specified next node in
general cannot be guaranteed to be a valid continuation of the
trajectory. Therefore, evolutionary operators are expected to
often lead to invalid offspring. In comparison, in priority based
representations the priorities specify an order between the
neighbours of any given node. If the neighbour with highest
priority is not a valid continuation, the neighbour with the
second highest priority can be used, and so on.

A. Search based on direct variable length representation

The direct variable length representation specifies a trajec-
tory by listing node IDs (v) that form a path in the speed

Fig. 3. Direct crossover in multigraphs. Example I. shows an ideal crossover
akin to the simple graph case, with novel node sequences in the offspring.
Example II. shows the lack of an ideal crossing site with distinct parent node
sequences. Example III. shows parents with identical node sequences.

profile graph (G) and the corresponding parallel arc indices
(ki) in the following form: [v1, k1, v2, k2, ...v|θ|].

1) Decoding: Decoding a candidate to a trajectory in G
is straightforward, with an exception of handling Constraint
3. Once the decoding reaches a speed profile that includes
an edge with an end node already in the decoded part of
the trajectory, the decoding is stopped to avoid a loop. The
already decoded part is returned, which will be penalised for
not reaching the destination node in fitness evaluation (see
Section IV-D). Repair in general would be difficult, because
the search process operates at the level of segments (G), while
repeated nodes appear at the level of edges (G0).

2) Mutation: A node in the candidate path is chosen at
random. Then, part of the chromosome is regenerated by a
random walk starting from the chosen node, taking predecessor
edges into account.

3) Crossover: A modified one point crossover is adopted
[32], that is illustrated in Figure 3. The crossover operator
is based on finding crossing sites between two parents. A
crossing site is one node or a list of sequential nodes that
appear in both parents other than vO or vD. If there are
differences in the node sequences of the parents both before
and after a given crossing site, the node sequences of the
offspring can be different from both parents. We call these
crossing sites ideal crossing sites.

In simple graph problems, crossover can only be conducted
if there are ideal crossing sites. Figure 3 (I) shows an example
of an ideal crossing site, while there isn’t any in (II) and (III).
In multigraph problems the offspring may be different from
the parents, as long as the parents have differences in ki (see
Figure 3 (III)). Algorithm 2 describes the different cases for
the crossover process. The cases are based on the comparison
of the two parents, which determines how the crossing site
is chosen. When the parents are identical, a crossover is not
possible. If only the node sequences are identical, a crossover

Page 6 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

Algorithm 2 CrossoverOutline(parent1, parent2)
Input: P1 := parent1,P2 := parent2
Output: ch1, ch2 := Offspring
1: if node sequences of P1, P2 are identical then
2: site← randomly chosen node from P1

3: ch1, ch2← Recombine(P1, P2, site)
4: else
5: sites← crossing sites
6: idealSites← ideal crossing sites out of sites
7: for all site in idealSites do
8: ch1, ch2← Recombine(P1, P2, site)
9: if at least one child is feasible then

10: break
11: end if
12: end for
13: if there is a crossing site adjacent to vD then
14: site← crossing site adjacent to vD

15: ch1, ch2← Recombine(P1, P2, site)
16: else if there is a crossing site adjacent to vO then
17: site← crossing site adjacent to vO

18: ch1, ch2← Recombine(P1, P2, site)
19: else
20: ch1, ch2← P1, P2

21: end if
22: end if
23: return ch1, ch2

can be performed at a randomly chosen site (Line 3), as shown
in Figure 3 (III). If the node sequence of the parents differs,
ideal crossing sites are tried first (Line 7). If none of the ideal
crossing sites produced offspring satisfying Constraint 1, other
crossing sites are considered. There can be at most two of
these, one adjacent to vO and one to vD (Line 18 and 15
respectively). In this application, a repair mechanism aimed
at eliminating loops is not enough to ensure feasibility of the
offspring, as Constraint (1) can still be violated. Therefore,
when a potential crossing site is found in Algorithm 2, the next
step is to execute the modified one-point crossover according
to Algorithm 3 to remove any loops from the offspring and
check for violation of Constraint 1. If a violation occurs, the
part up to the violation site is returned as a new candidate
(Line 6 of Algorithm 3), which will be penalised in fitness
assignment accordingly. Note, that in applications without
Constraint 1, removing loops is sufficient.

Algorithm 3 Recombine(parent1, parent2, site)
Input: P1 := parent1,P2 := parent2, site
Output: ch1, ch2 := Offspring
1: ch1← P1 up to site, and P2 from site
2: ch2← P2 up to site, and P1 from site
3: Remove loops from ch1, ch2 {regarding speed profile graph}
4: for all speed profile in chi for i = 1, 2 do
5: if speed profile violates predecessor edges then
6: Remove nodes from the chi starting from the end node of the speed profile
7: end if
8: end for
9: return ch1, ch2

4) Local search procedure: Local search operators in
memetic algorithms improve some candidate solutions in
the population with some probability in each iteration. The
improved candidates can give a jump start to the evolu-
tionary process through the crossover with other individuals.
Local search is costly in terms of computational resources
and running time, and might lead to premature convergence.
Therefore it should be employed infrequently. The local search
operator employed in this work is based on Dijkstra’s algo-
rithm [29]. Single objective shortest path problems can be
solved efficiently by exact algorithms. In the local search,

the objective values are aggregated to a single objective with
a random weight. A single-objective shortest path respecting
time windows is found between two randomly chosen nodes in
a candidate, and the newly found partial solution replaces the
part between the two nodes of the original candidate. The part
of trajectory being overwritten cannot be longer than a certain
percentage lrel of the whole length measured in hopcounts. We
also avoid local search in the case of trajectories shorter than
a certain minimum length lmin. If no solution is found by the
local search, the initial part of the candidate is returned, up to
the node from where the local search is started. The solution
will be highly penalised for not reaching the destination in
the fitness evaluation, akin to a death penalty, as explained in
Section IV-D. The above local search process can be easily
incorporated into the direct representation but not into other
representations, as explained in Section IV-B.

B. Search based on priority based representations
Priority based representations encode paths indirectly as

a priority value assigned to each node. For integer-valued
priority representation, chromosomes are permutations of the
first n integers, where n is the number of nodes. In the case
of random keys representation, priority values are floating-
point numbers. The priorities only encode paths. To encode
trajectories, parallel arc indices are also needed. As seen in
Section III-C, |I(e, (v, w)| depends on nodes v and w and
the predecessor edge. Unlike the direct representation, the
offspring might include segments that are not in any of the
parents. The parallel arc index inherited from a parent may be
higher than the number of available parallel arcs for a given
segment, and thus the solution would be infeasible. For this
reason we use an indirect way of encoding parallel arcs so
that the decoded parallel arc indices will always be feasible
[19]. A chromosome for the priority based representations for
multigraph problems can be conceptualised as a 2 by n matrix
M . M1,v is the priority value for node v. M2,v is a real number
between 0 and 1 that determines the parallel arc to be used
when leaving node v. The index of the parallel arc to be used
when leaving node v towards node w with predecessor edge
e, can be calculated as ⌊M2,v ∗ |I(e, (v, w)|⌋+ 1.

1) Decoding: The decoding process iteratively finds the
neighbour with the highest priority among the ones satisfying
Constraints 1 and 3, and adds them to the decoded trajectory.
The process is detailed in Algorithm 4. The loop in Lines
4-15 first identifies the allowed neighbour list (Line 6) that
consists of the nodes that are (1) directly reachable from
the last node of the already decoded part of the trajectory,
(2) do not introduce loops in G0 and (3) satisfy predecessor
edges. If there are no such nodes, the already decoded part
is returned (Line 8). Otherwise, the node with the highest
priority is identified, and the lists nodes and indices defining
the trajectory are updated (Lines 12 and 15).

2) Mutation: Insertion mutation is employed for both prior-
ity based representations. A randomly picked gene (a random
column in M) is removed from the chromosome and inserted
back at a new random locus. The loci of genes between
the place of removal and insertion change accordingly. The
process is illustrated in Figure 4.

Page 7 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

Algorithm 4 DecodingPriorityBased(M)
Input: M := priority based chromosome
Output: nodes, indices
1: nodes← list with a single element: vO

2: indices← empty list
3: predEdge← None
4: while Last element of nodes ̸= vD do
5: neighbours← Set of nodes reachable from last element in nodes in G
6: allowed← Set of nodes in neighbours /∈ nodes, {fulfill the predEdge,

and do not introduce loops in G0}
7: if allowed = ∅ then
8: return nodes, indices
9: else

10: prevNode← Last element of nodes
11: nextNode← Node with maximum priority in allowed according to M
12: nodes = nodes ∪ nextNode
13: x←| I(predEdge, prevNode, nextNode) |
14: currentIndex← ⌊M2,nextNode ∗ x⌋+ 1
15: indices = indices ∪ currentIndex
16: predEdge = pred((prevNode, nextNode), θ(nodes, indices))
17: end if
18: end while
19: return nodes, indices

Fig. 4. Illustration of insertion mutation.

Fig. 5. Illustration of WMX for the matrix chromosome.

3) Crossover: For the Integer priority representation,
Weight Mapping Crossover (WMX) [35] is adopted, that has
been proposed specifically for the MSPP. In the integer priority
representation, chromosomes are always a permutation of the
first n integers. Therefore, the original one point crossover
cannot be used. WMX reorders part of the priorities in a
chromosome according to the order of the corresponding
priority values in another chromosome. For the random keys
representation, 2-point crossover is used, as it was found the
most efficient in [59]. WMX and 2-point crossover operates
on priority values, the first row of M . We perform 2-point
crossover on the columns of M , so that the priority value
and the parallel arc for a given node is derived from the same
parent. In WMX, if the priority of a node changes, the parallel
arc indicator also changes as illustrated in Figure 5.

4) Integrating local search to priority based representation:
Dijkstra’s algorithm operates on a direct representation of
the graph. It cannot be used directly with priority based
representations. Therefore, priority-based chromosomes are
decoded before local search, and converted back afterwards.
Algorithm 5 takes the node sequence (nodes) and the index
sequence (indices) as input, together defining the trajectory.
It returns a priority-based chromosome, a 2 by n matrix, M ,
that encodes the trajectory specified in the input. In Lines 3-
8, the priorities of the nodes that appear in the trajectory are
set. These priorities are increasing from the destination node

towards the origin node. This ensures that in the decoding
process, the neighbour with the highest priority is the next
node in the trajectory for each node, as all other unvisited
nodes in the graph have lower priorities. In Lines 9-13, the rest
of the genes are filled up with the lower priority values, and
random parallel indices. Converting to random keys is similar,
apart from the priority values being floating point numbers.

Algorithm 5 directToPriority(nodes, indices)
Input: nodes, indices
Output: M := priority based chromosome
1: n← number of nodes in G
2: priority ← n
3: for i← 1 to | nodes | do
4: M1,nodes[i] ← priority
5: predEdge← predecessor edge for segment nodes[i], nodes[i + 1]

6: M2,nodes[i] ←
indices[i]

|I(predEdge,(nodes[i],nodes[i+1])|
7: priority ← priority − 1
8: end for
9: for j ← 1 to n do

10: if M1,j is not yet specified then
11: M1,j ← priority
12: M2,j ← Random floating-point number ∈ [0, 1]
13: priority ← priority − 1
14: end if
15: end for
16: return M

C. Initialisation

Heuristic initialisation is used from our previous work [59].
Initial solutions are generated semi-randomly through priority
values that specify a random walk with a bias to get closer to
vD. The process starts from the random keys representation, as
a chromosome from this representation is readily convertible
to the other two. M2,v are initialised randomly between 0 and
1. Each node v ∈ G is assigned a priority value according to

M1,v = −h(v, vD, G) + τ, τ ∈ (0, τmax). (4)

M1,v depends on the hopcount (the minimum number of
edges in a path) from the destination node and a parame-
ter τmax. The hopcount between nodes v and vD in G is
denoted h(v, vD, G), and τmax denotes the maximum value
of the randomisation coefficient τ . The likelihood of detours
appearing in the decoded paths can be controlled by the
parameter τmax. The higher τmax is, the more random the
priorities are, and the less prominent is the effect of the
heuristic initialisation compared to a purely random one. The
hopcount information can be calculated beforehand, as it uses
a simple graph and does not rely on the cost vectors and time
constraints. Therefore it does not increase computational time.

D. Fitness function and constraint handling

For any valid solution, fitness is defined over the objective
functions to minimise. For invalid solutions, trajectories that
do not reach vD, or violate time windows, we apply static
penalties [60]. The severity of the penalty, and how much
the violation of each constraint contributes to it is controlled
through weights. The fitness assignment including penalties
is described in Algorithm 6. The cost vector of trajectory
θ is calculated according to Equation (3) (Line 1). To get
the fitness value of θ, the penalties need to be added for

Page 8 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

violation of Constraints 2 and 4. The maximum value of any
cost component in any speed profiles in G, maxCost is used
to establish the magnitude of the penalties (Line 2). For not
reaching vD, the level of violation is measured as the minimum
distance of θ and vD (Line 3). For violating time windows,
the level of violation is measured as the number of time-
windows violated (Line 4). The level of constraint violation
and maxCost are multiplied to give the base penalty, p0.

We set up four weights respectively for the two objectives
and two constraints, α1, α2, α3, α4. These weights for the
penalty function were tuned by irace [61], and their values
are set to be 1, 7, 5, 3 respectively. The weights are applied in
Lines 7 and 11. One possible advantage of this weight set-up
is that the first objective value is penalised more for violating
time windows and the second for not reaching the destination.
Therefore, the population can be expected to not be biased
towards any of the two constraints.

Algorithm 6 FitnessAssignment(θ)
Input: θ := cost vector of trajectory
Output: fitness := fitness value
1: fitness← C(θ)
2: maxCost← Maximum value of any cost component in G.
3: minHop← Hopcount between θ and vD

4: conflicts← The number of time window violations
5: if vD ̸= v|θ| then
6: p0 ← maxCost ∗minHop
7: fitness← fitness + (p0 ∗ α1, p0 ∗ α2)
8: end if
9: if conflicts > 0 then

10: p0 ← maxCost ∗ conflicts
11: fitness← fitness + (p0 ∗ α3, p0 ∗ α4)
12: end if
13: return fitness

V. IMPLEMENTATION DETAILS

All numerical tests are performed on Queen Mary’s Ap-
ocrita HPC facility [62]. The methods are implemented in
Python 3, and the inspyred package [63] was used for the
evolutionary computation. Parallelisation has not been utilised.
The variants of MARMT are the following: Direct (D), Integer
Priority (IP) and Random Keys (RK), as discussed in Section
IV. For tuning the parameters, the irace package [61] was used.
The minimum and maximum length of candidate trajectories
for local search was set to lmin = 3 and lrel = 80% in all
experiments, as tuned by irace. The value of τmax controlling
the randomisation of the initial population (see Section IV-C)
is also constant in all experiments, so that all variants start with
approximately the same quality of initial population. Tuning
was carried out respectively for the different representations
for values of crossover and mutation rates. Population size
is kept the same across all variants, in order to ensure that
the same local search rate will lead to approximately equal
number of local search to be performed per generation. The
tuned parameters are shown in Table II. The value of the local
search rate is examined in Section VI.

All algorithms are tested using real data of a day of
operations at the Hong Kong International Airport (7.1.2017,
0:00–24:00). This taxiway layout can be categorised as
medium complexity, with 1309 nodes, 1491 edges, 160 gates
and 38 runway exits. In this study, 506 aircraft will be routed

TABLE II
PARAMETER VALUES.

Variants Pop. s. Cross. r. Mut. r. τmax lmin lrel
D 120 0.90 0.19 4.5 3 0.8
IP 120 0.95 0.29 4.5 3 0.8
RK 120 0.83 0.13 4.5 3 0.8

sequentially using Algorithm 1, with time windows inflicted
on later aircraft due to already routed aircraft. The most
straightforward way of comparison is the overall travel time
and fuel consumption realised for the whole day of operation.
This is an important practical measure of efficiency for longer
intervals of airport operations. Apart from the overall taxi time,
it is also important to report how often there were no solutions
found and a one minute postponement was applied until a
solution became available. For this reason, we use adjusted
taxi time, to account for the total postponements. For trajectory
θ, the adjusted taxi time C1,θ,adj in seconds can be calculated
from the taxi time of the trajectory (C1,θ), and the number of
postponements P for the given aircraft according to

C1,θ,adj = C1,θ + 60 ∗ P. (5)

The weights (w1, w2) for choosing the reserved trajectory
from Θi for each aircraft are used as the surrogates of the
operational cost coefficients to aggregate the two objectives
for showing insights in a more concise form. This aggregate
represents the real operational cost of the airport after a
decision is made by air traffic controllers. Note that using any
other weights could skew the results. The weighted aggregate
(Caggr,θ) of a trajectory θ is calculated according to

Caggr,θ = C1,θ,adj ∗ w1 + C2,θ,adj ∗ w2. (6)

To compare AMOA* in a concise way, relative weighted
aggregate (RWA) is also introduced to characterise how the
MARMT performs compared to AMOA* regarding the re-
served trajectories. For the ith aircraft RWA is calculated as

Caggr,i,rel =
Caggr,θi,MARMT

Caggr,θi,AMOA∗

, (7)

from the weighted aggregate of the trajectory reserved by
MARMT (Caggr,θi,MARMT

) and by AMOA* (Caggr,θi,AMOA∗).
We are not only interested in the reserved trajectories, but

also in finding a close approximation of the real Pareto front
for each aircraft. The ε quality indicator is used for assessing
proximity to the real Pareto front [64]. It signals higher quality
by lower values. When the approximate front is the same as
the reference front, ε equals 1. The unimpeded Pareto fronts -
obtained with ignoring time windows - are used as reference
fronts. This way, the reference is always the same for the same
aircraft, regardless of the current strategy for choosing the
reserved trajectory from Θi. Another relevant metric is the size
of the Pareto front. It is preferred to have more and uniformly
distributed solutions [15], so that the trade-offs between the
objectives can be assessed by air traffic controllers. Also, with
more solutions, the chance for at least one of them complying
with time windows is better. However, it is easier to find many
low-quality solutions than many high-quality ones, therefore,
both metrics are important.

Page 9 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

TABLE III
RUNNING TIMES OF AMOA* (U=3) ROUTING A SINGLE AIRCRAFT.

w1 mean
[s]

median
[s]

min
[s]

max
[s]

std
[s]

sum
[h]

1 80.1 41.4 0.9 602.1 106.3 11.26
0.5 45.3 22.9 0.4 338.8 61.6 6.37
0 40.9 20.1 0.4 322.8 56.1 5.74

TABLE IV
NUMBER OF SOLUTIONS FOUND BY AMOA* (U=3)

w1 mean median min max std
1 13.78 9 1 91 14.04
0.5 13.89 9 1 91 14.15
0 13.86 9 1 91 14.13

VI. RESULTS

First, the results obtained by the state-of-the-art enumerative
solution approach are described as a baseline. Then, results
of MARMT are presented. Two different termination criteria
are explored for MARMT: (1) 10 generations without change
in the Pareto optimal solutions found so far, to evaluate
convergence properties and (2) 10 seconds time budget, to
evaluate the potential use for real-time decision support. In
the following, one-sided Wilcoxon signed rank test was used
to decide statistical significance.

A. Results based on the enumerative solution approach

AMOA* with u = 3 is used to route all 506 aircraft,
because that is the highest number of speed profiles per
segment that can be solved in a reasonable time. Table III
describes the distribution of the running times for all aircraft.
We can see that running times of AMOA* range from 0.4
seconds to 602 seconds. Higher running times are observed
when the fastest trajectory (w1 = 1) is reserved for each
aircraft than in the other two cases. The mean of the running
times is approximately twice of the median, showing a skewed
distribution with most aircraft being routed in shorter times,
while a smaller number of them taking significantly longer.
The average running time is much higher than 10 seconds,
which is the limit acceptable for on-line decision support [65].

Table IV describes the number of optimal solutions found.
A skewed distribution where the average number of solutions
found is 13 and the maximum is 91 can be observed for all
three values of w1.

B. Results based on convergence based termination

First, we consider the case when the algorithm is allowed
to run until convergence. Convergence is assumed when there
is no improvement in the Pareto front found so far for 10
consecutive generations. For the purpose of comparing to
AMOA*, u = 3 is used and u = 10 is also included to show
how MARMT scales to higher numbers of parallel arcs.

1) Quality of reserved trajectories: In Table V we show
quality of solutions found through the mean RWA for the
whole day of operation. Statistical significance between the
best result (bold) and the others in each sub-row are indicated

Fig. 6. Decreasing marginal improvement in solution quality as measured by
the mean RWA and increase in running time as local search rate is increased
with MARMT-D. Experiments with different w1 values are grouped together.

as (*) : p < 0.05, (**): p < 0.005, (***): p < 0.0005. We
can see that in almost all cases MARMT-D outperforms the
priority based ones, and random keys representation is the
worst of the three. There are only a few cases where the
statistical significance of the difference between MARMT-
IP and MARMT-D cannot be established. We can therefore
conclude that MARMT-D performs the best in terms of RWA,
when the computational time is not limited. Table V also
shows that with the local search rate value of 0.02, MARMT-D
is able to reach the same or slightly better results as AMOA*,
when it is used with the same strategy for reserving routes
for individual aircraft. This is possible, because of the non-
additivity property and the presence of time windows.

Increasing the local search rate brings decreasing marginal
improvement in solution quality, while increasing running
time, as can be seen in Figure 6. We see a sharp improvement
in RWA until the local search rate reaches 0.02. The sum of
running times with the local search rate of 0.02 is 6.13 hours
for the whole day of operations with u = 3 and 7.29 hours
with u = 10. This is close to the computational times observed
with AMOA*, that is between 5.6 hours and 11.2 hours for
u = 3. With the local search rate of 0.1, the computational
time is above 21 hours, but there is only a modest further
improvement in RWA. Note, that the improvement upon the
highest previous local search rate is statistically significant
with p = 0.005 until the local search rate 0.06 for u = 3
and until the local search rate 0.04 for u = 10. Regarding the
number of parallel arcs, the RWA is lower for all local search
rates with u = 10, at least with MARMT-D, as can be seen
in Table V. The same trend is shown in Figure 6, where we
also can see that the additional computational time required is
low, especially compared to AMOA*. For u = 10, AMOA*
would take longer than 10 days [4].

The results shown so far only consider the RWA. Figure 7
shows the objectives separately for AMOA* and for different
variants of MARMT. With local search rate of 0.02, MARMT-
D dominates the results achieved by AMOA*.

2) Quality of Pareto fronts found: In Table VI we can see
results regarding the ε indicator, which quantifies the quality
of the Pareto fronts found for individual aircraft by MARMT.
MARMT-D is the best again among the three regardless of
how often local search is performed. The statistical signifi-

Page 10 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

TABLE V
MEAN RWA OF THE 506 AIRCRAFT WITH VARIED LOCAL SEARCH RATES.

w1 = 0.0 w1 = 0.5 w1 = 1.0
RK D IP RK D IP RK D IP

local search r.
u = 3 0.000 1.0267 ** 1.0231 1.0265 ** 1.0207 * 1.0180 1.0198 * 1.0194 ** 1.0174 1.0188 *

0.001 1.0226 ** 1.0160 1.0193 ** 1.0145 ** 1.0117 1.0127 1.0128 * 1.0112 1.0111
0.005 1.0136 ** 1.0029 1.0083 ** 1.0054 ** 1.0013 1.0032 ** 1.0056 ** 1.0034 1.0031
0.010 1.0092 ** 1.0002 1.0026 ** 1.0026 ** 0.9991 1.0000 ** 1.0025 ** 1.0007 1.0016
0.020 1.0055 ** 0.9983 0.9993 ** 1.0004 ** 0.9982 0.9986 ** 1.0012 ** 0.9998 1.0001 *
0.040 1.0033 ** 0.9979 0.9983 * 0.9995 ** 0.9979 0.9982 * 1.0005 ** 0.9994 0.9996
0.060 1.0023 ** 0.9977 0.9981 ** 0.9994 ** 0.9978 0.9981 * 1.0002 ** 0.9992 0.9994 *
0.080 1.0019 ** 0.9978 0.9980 0.9992 ** 0.9978 0.9982 ** 1.0004 ** 0.9992 0.9993
0.100 1.0017 ** 0.9977 0.9978 0.9990 ** 0.9977 0.9980 ** 1.0003 ** 0.9991 0.9994 *

u = 10 0.000 1.0163 ** 1.0083 1.0163 ** 1.0207 ** 1.0148 1.0204 ** 1.0210 ** 1.0161 1.0196 **
0.001 1.0133 ** 0.9998 1.0098 ** 1.0140 ** 1.0075 1.0116 ** 1.0149 ** 1.0105 1.0132 *
0.005 1.0042 ** 0.9883 0.9960 ** 1.0059 ** 0.9988 1.0021 ** 1.0073 ** 1.0024 1.0046 **
0.010 0.9985 ** 0.9850 0.9900 ** 1.0027 ** 0.9967 0.9988 ** 1.0045 ** 1.0000 1.0019 **
0.020 0.9957 ** 0.9834 0.9867 ** 1.0007 ** 0.9961 0.9969 ** 1.0031 ** 0.9993 1.0001 **
0.040 0.9932 ** 0.9831 0.9846 ** 0.9992 ** 0.9959 0.9962 1.0022 ** 0.9988 0.9990
0.060 0.9915 ** 0.9829 0.9842 ** 0.9988 ** 0.9960 0.9961 1.0015 ** 0.9988 0.9988
0.080 0.9916 ** 0.9828 0.9836 ** 0.9983 ** 0.9959 0.9959 1.0014 ** 0.9987 0.9988
0.100 0.9906 ** 0.9829 0.9836 ** 0.9984 ** 0.9958 0.9959 1.0013 ** 0.9987 0.9988

Fig. 7. Difference between the proposed algorithm with and without local
search and AMOA*. Three different weights are used for reserving trajectories
for individual aircraft. Each marker represents the average of 10 data points.

cance of this is stronger with u = 10. In the case of u = 3,
MARMT-IP can also be competitive. This is especially the
case when w1 = 1, that is when the fastest trajectories are
reserved for each aircraft. Table VII shows the average number
of solutions in Θi, which also supports the superiority of
MARMT-D. With the increasing local search rate, the number
of Pareto optimal solutions increases, with the exception that
the variants with the lowest local search rates produce less
solutions than the ones without local search. In the case of
u = 3, MARMT-D finds 9-12 solutions, while AMOA* finds
13-14. In the case of u = 10, the number of solutions obtained
by MARMT-D is nearly twice as high as with u = 3.

We have seen that when computational time of MARMT
is not limited, MARMT-D performs the best in terms of
overall objective values, ε and the number of solutions in
Θi. Higher local search rates generally lead to better solution
quality. We have also seen that better solution quality can be
reached with more parallel arcs (alternative speed profiles) in
the multigraph. These results are important as they establish
that MARMT is able to find Pareto fronts close to or better
than those of AMOA*, when given enough time.

C. Potential for real time decision support

Promptness of routing decisions can be crucial in real-
world problems. In the airport ground movement problem, a
trajectory needs to be found for each aircraft under 10 seconds
for on-line decision support [65]. This time budget is used
as the termination criteria in the following experiments. For
routing the 506 aircraft, this amounts to 1.4 hours, which
is lower than any computational times observed in Figure 6,
therefore, we can expect compromised solution quality. Only
results of MARMT-D are shown, without loss of generality. In
Table VIII statistical significance of marginal improvement in
mean RWA with increasing local search rates can be seen until
the value of 0.02, for both values of u. Note, that even with
the 10 seconds time budget, the mean RWA is within 1% of
the mean RWA obtained by AMOA*. In Table IX we can see
the number of solutions in Θi decrease as the local search rate
increases, which is expected as local search is computationally
intensive and thus less evaluations are performed in the same
time budget. However, the lower local search rates below
0.02 lead to poorer objective values, which are the primary
consideration. With the local search rate of 0.02, the average
number of optimal solutions found is approximately half of
the the number of optimal solutions found without limiting
the computation time. It is not obvious from our experiments
if including more speed profiles is worthwhile with small time
budgets. The RWA is similar in the cases of u = 3 and u = 10.
However, there are more solutions found in case of u = 10.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper a metaheuristic solution approach has been
proposed for the airport ground movement problem, as a rep-
resentative of transportation problems with realistic modelling
based on multigraphs. The adaptation includes modifying
existing operators for the specific problem, incorporating time
window constraints and constraint handling and proposing a
local search operator for the problem. The proposed algorithms
were evaluated using real data about one day of operation at

Page 11 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

TABLE VI
MEAN ε INDICATOR FOR SEQUENTIAL ROUTING OF THE 506 AIRCRAFT WITH VARIED LOCAL SEARCH RATES.

w1 = 0.0 w1 = 0.5 w1 = 1.0
RK D IP RK D IP RK D IP

local search r.
u = 3 0.000 1.0348 * 1.0325 1.0351 * 1.0341 * 1.0327 1.0343 1.0345 ** 1.0320 1.0346 **

0.001 1.0324 ** 1.0269 1.0291 * 1.0315 ** 1.0262 1.0286 * 1.0311 ** 1.0252 1.0280 **
0.005 1.0236 ** 1.0155 1.0188 ** 1.0213 ** 1.0147 1.0165 * 1.0213 ** 1.0153 1.0158
0.010 1.0198 ** 1.0127 1.0138 * 1.0174 ** 1.0108 1.0120 * 1.0176 ** 1.0109 1.0123 *
0.020 1.0162 ** 1.0105 1.0109 1.0144 ** 1.0090 1.0094 * 1.0150 ** 1.0093 1.0100 **
0.040 1.0145 ** 1.0098 1.0100 1.0129 ** 1.0082 1.0087 ** 1.0131 ** 1.0086 1.0089 *
0.060 1.0135 ** 1.0095 1.0098 * 1.0122 ** 1.0081 1.0084 * 1.0122 ** 1.0084 1.0085
0.080 1.0134 ** 1.0097 1.0097 1.0119 ** 1.0080 1.0085 ** 1.0124 ** 1.0082 1.0084 *
0.100 1.0130 ** 1.0094 1.0094 1.0117 ** 1.0079 1.0082 * 1.0121 ** 1.0082 1.0084

u = 10 0.000 1.0344 ** 1.0291 1.0344 ** 1.0334 ** 1.0279 1.0343 ** 1.0331 ** 1.0281 1.0325 **
0.001 1.0325 ** 1.0222 1.0294 ** 1.0293 ** 1.0206 1.0264 ** 1.0287 ** 1.0223 1.0271 *
0.005 1.0249 ** 1.0137 1.0185 ** 1.0213 ** 1.0111 1.0159 ** 1.0208 ** 1.0120 1.0156 **
0.010 1.0197 ** 1.0103 1.0140 ** 1.0175 ** 1.0079 1.0110 ** 1.0172 ** 1.0087 1.0112
0.020 1.0180 ** 1.0087 1.0117 ** 1.0151 ** 1.0066 1.0088 ** 1.0148 ** 1.0073 1.0085 **
0.040 1.0163 ** 1.0082 1.0101 ** 1.0128 ** 1.0062 1.0071 ** 1.0125 ** 1.0065 1.0070 **
0.060 1.0146 ** 1.0081 1.0095 ** 1.0122 ** 1.0062 1.0068 ** 1.0116 ** 1.0063 1.0067 *
0.080 1.0150 ** 1.0079 1.0090 ** 1.0115 ** 1.0061 1.0065 ** 1.0114 ** 1.0062 1.0066 *
0.100 1.0139 ** 1.0079 1.0089 ** 1.0117 ** 1.0060 1.0064 ** 1.0112 ** 1.0063 1.0066

TABLE VII
MEAN NUMBER OF PARETO OPTIMAL SOLUTIONS FOUND FOR THE 506 AIRCRAFT WITH VARIED LOCAL SEARCH RATES.

w1 = 0.0 w1 = 0.5 w1 = 1.0
RK D IP RK D IP RK D IP

local search r.
u = 3 0.000 5.4 9.9 5.0 5.4 9.8 5.0 5.4 9.9 5.0

0.001 5.2 9.3 4.9 5.2 9.3 4.9 5.2 9.3 4.9
0.005 5.1 9.5 5.3 5.1 9.4 5.3 5.1 9.5 5.4
0.010 5.3 10.2 5.9 5.3 10.3 6.0 5.3 10.4 6.0
0.020 5.6 11.1 6.9 5.7 11.3 7.0 5.7 11.2 7.0
0.040 6.2 11.9 7.9 6.2 11.9 7.9 6.3 11.9 7.9
0.060 6.5 12.1 8.4 6.6 12.2 8.3 6.6 12.3 8.4
0.080 6.7 12.4 8.6 6.6 12.4 8.6 6.7 12.5 8.7
0.100 6.7 12.5 8.8 6.7 12.5 8.8 6.8 12.6 8.8

u = 10 0.000 6.7 19.4 6.1 6.8 19.5 6.1 6.8 19.7 6.2
0.001 6.5 17.9 5.9 6.5 18.1 6.0 6.6 18.0 6.0
0.005 6.4 17.9 6.5 6.4 18.0 6.5 6.5 18.1 6.6
0.010 6.7 18.9 7.4 6.7 19.2 7.5 6.7 19.4 7.4
0.020 7.2 20.4 8.7 7.2 20.8 8.8 7.3 20.9 8.9
0.040 8.1 21.8 10.2 8.1 22.3 10.3 8.2 22.1 10.3
0.060 8.4 22.5 11.1 8.5 22.6 11.3 8.5 22.7 11.3
0.080 8.6 22.7 11.7 8.7 23.1 11.8 8.7 23.0 11.8
0.100 8.6 22.9 12.2 8.6 23.2 12.2 8.7 23.3 12.2

Hong Kong International airport. Three genetic representations
including the direct, the integer priority based and the random
keys representations were compared. Based on the converged
solution quality, MARMT-D proved to be the most effective
at exploring the search space. MARMT-D found around twice
as many Pareto optimal solutions as the other variants. This is
likely due to (1) the direct representation being the only one
that provides 1-to-1 encoding and (2) the adaptation of the
crossover operator to the multigraph case providing more ef-
fective exploration of parallel arc sequences. The performance
of MARMT-D is very close to a state-of-the-art enumerative
solution approach even with a 10 seconds time budget, and it
outperformed said enumerative approach when allowed to con-
verge. The local search operator enhances the search capability
of MARMT by introducing new high quality candidates to the
population based on single objective search. We observed great
improvements in terms of all considered measures of solution
quality with the use of the local search operator for the case

of convergence based termination. With the 10 seconds time
budget as the stopping criteria, local search improved objective
values. However, with increasing local search rate the number
of Pareto optimal solutions decreased. Including more speed
profiles slightly improved solution quality with convergence
termination in terms of all considered measures. The same
conclusion could not be drawn for the 10 seconds time budget,
where only the number of Pareto optimal solutions increases.
Possibly, the flexibility allowed by more speed profiles cannot
be fully capitalised, because the order of aircraft is fixed
beforehand, as explained in [66]. This question remains to
be explored in future research.

This study based on a medium sized airport considering
two objectives shows great potential for reaching real-time
decision support with MARMT. A natural progression of this
work is to investigate larger airports, scenarios with denser
traffic and including emissions as a third objective. There is
a high interest in many-objective shortest path problems, in

Page 12 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

TABLE VIII
MEAN RWA FOR THE 506 AIRCRAFT ROUTED BY MARMT-D WITH 10 SECONDS TIME BUDGET WITH VARIED LOCAL SEARCH RATES.

0.0 0.001 0.005 0.01 0.02 0.04 0.06 0.08 0.1
local search r.

u = 3 w1 = 0.0 1.0239 1.0194 1.0126 1.0094 1.0096 1.0103 1.0096 1.0095 1.0091
w1 = 0.5 1.0182 1.0139 1.0060 1.0039 1.0031 1.0034 1.0033 1.0031 1.0040
w1 = 1.0 1.0180 1.0131 1.0065 1.0049 1.0034 1.0038 1.0040 1.0044 1.0040

u = 10 w1 = 0.0 1.0096 1.0051 0.9974 0.9965 0.9948 0.9966 0.9975 0.9992 0.9978
w1 = 0.5 1.0155 1.0110 1.0043 1.0026 1.0025 1.0025 1.0035 1.0030 1.0034
w1 = 1.0 1.0163 1.0124 1.0062 1.0054 1.0045 1.0045 1.0054 1.0058 1.0047

TABLE IX
MEAN NUMBER OF PARETO OPTIMAL SOLUTIONS FOR THE 506 AIRCRAFT ROUTED BY MARMT-D WITH 10 SECONDS TIME BUDGET.

0.0 0.001 0.005 0.01 0.02 0.04 0.06 0.08 0.1
local search r.

u = 3 w1 = 0.0 9.0 8.7 7.6 7.2 6.5 5.9 5.5 5.3 5.3
w1 = 0.5 8.9 8.6 7.7 7.3 6.7 6.0 5.6 5.4 5.2
w1 = 1.0 9.0 8.7 7.7 7.3 6.6 6.1 5.6 5.3 5.2

u = 10 w1 = 0.0 16.2 15.4 12.7 11.3 9.7 8.3 7.3 6.7 6.6
w1 = 0.5 16.1 15.1 12.6 11.3 9.7 8.2 7.2 6.9 6.6
w1 = 1.0 16.4 15.2 12.8 11.2 9.7 8.5 7.2 6.9 6.8

line with the more realistic and detailed modelling of routing
problems. A recent benchmark suite is provided in [17] for
simple graph problems. The multigraph modelling approach
investigated in this paper can be readily extended to many-
objectives and the proposed solution approaches pave the first
step to solve such problems effectively. The improvement of
operators for priority based representations might become a
fruitful area of further research. Often, the changes introduced
in the chromosome are not sufficient to modify the encoded so-
lution, limiting the exploration capabilities of these algorithms
leading to slow convergence. Strategies aimed at ensuring the
modification of the encoded solution might mitigate some of
the disadvantage of the ambiguity associated with the priority
based representations.

ACKNOWLEDGEMENT

This work is supported in part by the Engineering and
Physical Sciences Research Council (EP/N029496/1,
EP/N029496/2, EP/N029356/1, EP/N029577/1,
EP/N029577/2). Adriana Lara acknowledges support
from project no. SIP20211847. Carlos A. Coello Coello
acknowledges support from the CONACyT project no. 1920,
a 2018 SEP-Cinvestav grant (application no. 4), and the
Basque Government through the BERC 2018-2021 program
by the Spanish Ministry of Science.

REFERENCES

[1] S. Zajac and S. Huber, “Objectives and methods in multi-objective
routing problems: a survey and classification scheme,” European Journal
of Operational Research, 2020.

[2] M. Kurant and P. Thiran, “Extraction and analysis of traffic and
topologies of transportation networks,” Physical Review E, vol. 74, no. 3,
p. 036114, 2006.

[3] S. Ravizza, J. Chen, J. A. Atkin, E. K. Burke, and P. Stewart, “The
trade-off between taxi time and fuel consumption in airport ground
movement,” Public Transport, vol. 5, no. 1-2, pp. 25–40, 2013.

[4] M. Weiszer, E. K. Burke, and J. Chen, “Multi-objective routing and
scheduling for airport ground movement,” Transportation Research Part
C: Emerging Technologies, vol. 119, p. 102734, 2020.

[5] M. Gallet, T. Massier, and T. Hamacher, “Estimation of the energy
demand of electric buses based on real-world data for large-scale public
transport networks,” Applied energy, vol. 230, pp. 344–356, 2018.

[6] J. Chen, M. Weiszer, G. Locatelli, S. Ravizza, J. A. Atkin, P. Stewart,
and E. K. Burke, “Toward a more realistic, cost-effective, and greener
ground movement through active routing: A multiobjective shortest path
approach,” IEEE Transactions on Intelligent Transportation Systems,
vol. 17, no. 12, pp. 3524–3540, 2016.

[7] M. Wen, D. Pacino, C. Kontovas, and H. Psaraftis, “A multiple ship
routing and speed optimization problem under time, cost and envi-
ronmental objectives,” Transportation Research Part D: Transport and
Environment, vol. 52, pp. 303–321, 2017.

[8] X. Yang, X. Li, B. Ning, and T. Tang, “A survey on energy-efficient
train operation for urban rail transit,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 1, pp. 2–13, 2016.

[9] Q. Meng, D.-H. Lee, and R. L. Cheu, “Multiobjective vehicle routing and
scheduling problem with time window constraints in hazardous material
transportation,” Journal of transportation engineering, vol. 131, no. 9,
pp. 699–707, 2005.

[10] T. Garaix, C. Artigues, D. Feillet, and D. Josselin, “Vehicle routing prob-
lems with alternative paths: An application to on-demand transportation,”
European Journal of Operational Research, vol. 204, no. 1, pp. 62–75,
2010.

[11] G. Xiong and Y. Wang, “Best routes selection in multimodal networks
using multi-objective genetic algorithm,” Journal of Combinatorial
Optimization, vol. 28, no. 3, pp. 655–673, 2014.

[12] P. Serafini, “Some considerations about computational complexity for
multi objective combinatorial problems,” in Recent advances and histor-
ical development of vector optimization. Springer, 1987, pp. 222–232.

[13] J. Hartmanis, “Computers and intractability: a guide to the theory of
np-completeness (michael r. garey and david s. johnson),” Siam Review,
vol. 24, no. 1, p. 90, 1982.

[14] J. M. A. Pangilinan and G. K. Janssens, “Evolutionary algorithms
for the multiobjective shortest path problem,” International Journal of
Mathematical and Computational Sciences, vol. 1, no. 1, pp. 7–12, 2007.

[15] C. Chitra and P. Subbaraj, “A nondominated sorting genetic algorithm
solution for shortest path routing problem in computer networks,” Expert
Systems with Applications, vol. 39, no. 1, pp. 1518–1525, 2012.

[16] R. Li, Y. Leung, B. Huang, and H. Lin, “A genetic algorithm for
multiobjective dangerous goods route planning,” International Journal
of Geographical Information Science, vol. 27, no. 6, pp. 1073–1089,
2013.

[17] J. Weise and S. Mostaghim, “A scalable many-objective pathfinding
benchmark suite,” IEEE Transactions on Evolutionary Computation,
2021.

[18] O. Dib, M. Dib, and A. Caminada, “Computing multicriteria shortest
paths in stochastic multimodal networks using a memetic algorithm,”
International Journal on Artificial Intelligence Tools, vol. 27, no. 07, p.
1860012, 2018.

Page 13 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

[19] L. Beke, M. Weiszer, and J. Chen, “A comparison of genetic represen-
tations and initialisation methods for the multi-objective shortest path
problem on multigraphs,” SN Computer Science, vol. 2, no. 3, pp. 1–22,
2021.

[20] P. Moscato and M. G. Norman, “A memetic approach for the traveling
salesman problem implementation of a computational ecology for com-
binatorial optimization on message-passing systems,” Parallel computing
and transputer applications, vol. 1, pp. 177–186, 1992.

[21] F. Neri and C. Cotta, “Memetic algorithms and memetic computing op-
timization: A literature review,” Swarm and Evolutionary Computation,
vol. 2, pp. 1–14, 2012.

[22] C.-K. Goh, Y.-S. Ong, and K. C. Tan, Multi-objective memetic algo-
rithms. Springer, 2008, vol. 171.

[23] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[24] J. C. N. Climaco and E. Q. V. Martins, “A bicriterion shortest path
algorithm,” European Journal of Operational Research, vol. 11, no. 4,
pp. 399–404, 1982.

[25] J. Mote, I. Murthy, and D. L. Olson, “A parametric approach to solving
bicriterion shortest path problems,” European Journal of Operational
Research, vol. 53, no. 1, pp. 81–92, 1991.

[26] A. Raith and M. Ehrgott, “A comparison of solution strategies for
biobjective shortest path problems,” Computers & Operations Research,
vol. 36, no. 4, pp. 1299–1331, 2009.

[27] E. Q. V. Martins, “On a multicriteria shortest path problem,” European
Journal of Operational Research, vol. 16, no. 2, pp. 236–245, 1984.

[28] A. J. Skriver and K. A. Andersen, “A label correcting approach for
solving bicriterion shortest-path problems,” Computers & Operations
Research, vol. 27, no. 6, pp. 507–524, 2000.

[29] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[30] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[31] N. Shi, S. Zhou, F. Wang, Y. Tao, and L. Liu, “The multi-criteria
constrained shortest path problem,” Transportation Research Part E:
Logistics and Transportation Review, vol. 101, pp. 13–29, 2017.

[32] C. W. Ahn and R. S. Ramakrishna, “A genetic algorithm for shortest
path routing problem and the sizing of populations,” IEEE transactions
on evolutionary computation, vol. 6, no. 6, pp. 566–579, 2002.

[33] J. Inagaki, M. Haseyama, and H. Kitajima, “A genetic algorithm for
determining multiple routes and its applications,” in ISCAS’99. Proceed-
ings of the 1999 IEEE International Symposium on Circuits and Systems
VLSI (Cat. No. 99CH36349), vol. 6. IEEE, 1999, pp. 137–140.

[34] M. Gen, F. Altiparmak, and L. Lin, “A genetic algorithm for two-stage
transportation problem using priority-based encoding,” OR spectrum,
vol. 28, no. 3, pp. 337–354, 2006.

[35] L. Lin and M. Gen, “An effective evolutionary approach for bicriteria
shortest path routing problems,” IEEJ Transactions on Electronics,
Information and Systems, vol. 128, no. 3, pp. 416–423, 2008.

[36] C. Blum and A. Roli, “Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison,” ACM computing surveys
(CSUR), vol. 35, no. 3, pp. 268–308, 2003.

[37] Z. Ji, Y. S. Kim, and A. Chen, “Multi-objective α-reliable path finding
in stochastic networks with correlated link costs: A simulation-based
multi-objective genetic algorithm approach (smoga),” Expert Systems
with Applications, vol. 38, no. 3, pp. 1515–1528, 2011.

[38] M. Gen, R. Cheng, and D. Wang, “Genetic algorithms for solving
shortest path problems,” in Proceedings of 1997 IEEE International
Conference on Evolutionary Computation (ICEC’97). IEEE, 1997, pp.
401–406.

[39] M. Gen and L. Lin, “A new approach for shortest path routing problem
by random key-based ga,” in Proceedings of the 8th annual conference
on genetic and evolutionary computation. ACM, 2006, pp. 1411–1412.

[40] C. A. C. Coello, “Constraint-handling techniques used with evolutionary
algorithms,” in Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion, 2021, pp. 692–714.

[41] D. M. Miranda, J. Branke, and S. V. Conceição, “Algorithms for the
multi-objective vehicle routing problem with hard time windows and
stochastic travel time and service time,” Applied Soft Computing, vol. 70,
pp. 66–79, 2018.

[42] S. Ravizza, J. A. Atkin, and E. K. Burke, “A more realistic approach
for airport ground movement optimisation with stand holding,” Journal
of Scheduling, vol. 17, no. 5, pp. 507–520, 2014.

[43] C. Lesire, “An iterative a* algorithm for planning of airport ground
movements.” in ECAI, vol. 2010, 2010, pp. 413–418.

[44] J. Chen, M. Weiszer, P. Stewart, and M. Shabani, “Toward a more
realistic, cost-effective, and greener ground movement through active
routing—part i: Optimal speed profile generation,” IEEE Transactions
on Intelligent Transportation Systems, 2016.

[45] L. Mandow, J. P. De la Cruz et al., “A new approach to multiobjective
a* search.” in IJCAI, vol. 8. Citeseer, 2005.

[46] R. L. Carraway, T. L. Morin, and H. Moskowitz, “Generalized dynamic
programming for multicriteria optimization,” European journal of oper-
ational research, vol. 44, no. 1, pp. 95–104, 1990.

[47] D. S. Lai, O. C. Demirag, and J. M. Leung, “A tabu search heuristic
for the heterogeneous vehicle routing problem on a multigraph,” Trans-
portation Research Part E: Logistics and Transportation Review, vol. 86,
pp. 32–52, 2016.

[48] H. B. Ticha, N. Absi, D. Feillet, and A. Quilliot, “Empirical analysis
for the vrptw with a multigraph representation for the road network,”
Computers & Operations Research, vol. 88, pp. 103–116, 2017.

[49] X. Wu, X. He, G. Yu, A. Harmandayan, and Y. Wang, “Energy-
optimal speed control for electric vehicles on signalized arterials,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp.
2786–2796, 2015.

[50] H. N. Psaraftis and C. A. Kontovas, “Speed models for energy-efficient
maritime transportation: A taxonomy and survey,” Transportation Re-
search Part C: Emerging Technologies, vol. 26, pp. 331–351, 2013.

[51] ——, “Ship speed optimization: Concepts, models and combined speed-
routing scenarios,” Transportation Research Part C: Emerging Technolo-
gies, vol. 44, pp. 52–69, 2014.

[52] D. Li, M. Yang, C.-J. Jin, G. Ren, X. Liu, and H. Liu, “Multi-
modal combined route choice modeling in the maas age considering
generalized path overlapping problem,” IEEE Transactions on Intelligent
Transportation Systems, 2020.

[53] M. Enzi, S. N. Parragh, and J. Puchinger, “The bi-objective multimodal
car-sharing problem,” arXiv preprint arXiv:2010.10344, 2020.

[54] J. Hrnčı́ř, M. Rovatsos, and M. Jakob, “Ridesharing on timetabled trans-
port services: A multiagent planning approach,” Journal of Intelligent
Transportation Systems, vol. 19, no. 1, pp. 89–105, 2015.

[55] M. Weiszer, J. Chen, and P. Stewart, “A real-time active routing approach
via a database for airport surface movement,” Transportation Research
Part C: Emerging Technologies, vol. 58, pp. 127–145, 2015.

[56] H. Khadilkar and H. Balakrishnan, “Estimation of aircraft taxi fuel burn
using flight data recorder archives,” Transportation Research Part D:
Transport and Environment, vol. 17, no. 7, pp. 532–537, 2012.

[57] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on evolutionary computa-
tion, vol. 11, no. 6, pp. 712–731, 2007.

[58] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part i: solving problems with box constraints,” IEEE transactions on
evolutionary computation, vol. 18, no. 4, pp. 577–601, 2013.

[59] L. Beke, M. Weiszer, and J. Chen, “A comparison of genetic represen-
tations for multi-objective shortest path problems on multigraphs,” in
European Conference on Evolutionary Computation in Combinatorial
Optimization (Part of EvoStar). Springer, 2020, pp. 35–50.

[60] A. Homaifar, C. X. Qi, and S. H. Lai, “Constrained optimization via
genetic algorithms,” Simulation, vol. 62, no. 4, pp. 242–253, 1994.

[61] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and
M. Birattari, “The irace package: Iterated racing for automatic algorithm
configuration,” Operations Research Perspectives, vol. 3, pp. 43–58,
2016.

[62] “This research utilised queen mary’s apocrita hpc facility, supported by
qmul research-it.” http://doi.org/10.5281/zenodo.438045.

[63] “Inspyred: Bio-inspired algorithms in python,”
https://pythonhosted.org/inspyred/, accessed: 2019-10-30.

[64] A. Liefooghe and B. Derbel, “A correlation analysis of set quality
indicator values in multiobjective optimization,” in Proceedings of the
Genetic and Evolutionary Computation Conference 2016, 2016, pp.
581–588.

[65] “Icao, 2004. advanced surface movement guidance and control sys-
tems (a-smgcs) manual. international civil aviation organization,”
http://www.icao.int/Meetings/anconf12/Document.

[66] M. Weiszer, E. K. Burke, and J. Chen, “A note on multi-graph struc-
ture for constrained routing and scheduling problems,” Unpublished
manuscript, vol. -, pp. –, 2021.

Page 14 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

